2.23. Метод МО Хюккеля
Этот чрезвычайно простой не-ССП метод, первоначально предложенный для углеводородов (Хюккель, 1931), основан на нескольких очень сильных приближениях:
1) Принимается p -электронное приближение; считают, что АО образуют ортонормальный базис, т.е. Sm n = d m n .
2) Межэлектронными взаимодействиями (т.е. всеми двухэлектронными кулоновскими и обменными интегралами) пренебрегают. Из-за этого решение уравнений метода не требует итераций и проводится в один шаг.
hm m = a m ,
hm n = kb m n . (2. 72)
a m
называется кулоновским интегралом (его не следует путать с двухэлектронными кулоновскими интегралами g AB), он принимается равным потенциалу ионизации электрона на орбитали m в свободном атоме.4) Принимается, что b m n =0, если АО m и n не принадлежат ковалентно связанным атомам.
Соответствующие этим приближениям уравнения Рутана имеют вид
(2.73)
и называются уравнениями Хюккеля, имеющими ненулевые решения при равенстве нулю детерминанта
ï hm n - e id m n ï = 0. (2.74)
Полная энергия в этом методе есть просто сумма орбитальных энергий
где n – число электронов на МО.
Уравнения Хюккеля могут быть легко записаны и решены для любой системы. Рассмотрим пример молекулы этилена С
2Н4, имеющей 2 p -электрона (свяжем их с c (рz) -АО атомов углерода, направленными перпендикулярно плоскости молекулы). Интегралы a С = -11,0 эВ, b СС –2,4 эВ. Детерминант (2.74) имеет вид (2.76)
(здесь введены обозначения х=(a С
- e )/b СС). Раскрывая определитель, имеем:х2 –1=0 и х = ± 1, т.е. e 1= a С +b СС , e 2 =a С - b СС.
В принятых обозначениях система уравнений (2.73) имеет вид
с
1 х + с2 = 0с
1 + с2 х = 0, (2.77)Подставим теперь х = ± 1 в (2.77). При х= -1 имеем с
1 = с2 . Используя условие нормировки волновой функции этилена с12 + с22 = 1, получаем с1 = с2 = 1/Ö 2 . Таким образом, одна из p -МО этилена имеет видj 1 = 1/Ö 2 (c 1 +c 2). (2.78)
При х = 1 имеем с
1 = - с2 и, повторяя рассуждения, получаем другую p -МО.j 2 = 1/Ö 2 (c 1 - c 2). (2.79)
Так как b СС
< 0, то e 1 < e 2 причем, e 1 - e 2 = 2b СС. Это означает, что МО j 1 более энергетически стабильна.Полинг, Уэлланд, Стрейтвизер, Дьюар и другие предложили различные модификации метода Хюккеля, распространив его, в частности, на системы с гетероатомами в цикле. Модификация, в основном, касалась способа выбора параметров a и b и подробно описана в литературе (М. Дьюар. Метод молекулярных орбиталей в органической химии).
Метод Хюккеля, безусловно, является лишь качественным: он ограничен предсказанием энергетики МО сопряженных систем и не способен дать информацию о молекулярной структуре. Однако за счет удачной параметризации этот метод может давать хорошие относительные орбитальные энергии для рядов p -электронных органических и металлоорганических систем. Это позволяет, в частности, идентифицировать полосы в электронных спектрах поглощения таких молекул, отождествляя разности орбитальных энергий e
k - e i с энергиями переходов.